
Urinary Concentrations of Phthalate Metabolites in Relation to 
Pregnancy Loss among Women Conceiving with Medically 
Assisted Reproduction

Carmen Messerlian1, Blair J. Wylie1,2, Lidia Minguez-Alarcon1, Paige L. Williams3,4, 
Jennifer B. Ford1, Irene C. Souter5, Antonia M. Calafat6, Russ Hauser1,4,7, and for the Earth 
Study Team
1Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 
USA

2Massachusetts General Hospital, Division of Maternal-Fetal Medicine, Department of Obstetrics 
and Gynecology, Harvard Medical School, Boston, MA, USA

3Department of Biostatistics, Harvard T.H. Chan School of Public Health Boston, MA, USA

4Department of Epidemiology, Harvard T.H. Chan School of Public Health Boston, MA, USA

5Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, 
Harvard Medical School, Boston, MA, USA

6National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, 
GA, USA

7Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical 
School, Boston

Abstract

Background—Animal studies demonstrate that several phthalates are embryofetotoxic and are 

associated with increased pregnancy loss and malformations. Results from human studies on 

phthalates and pregnancy loss are inconsistent.

Methods—We examined pregnancy loss prospectively in relation to urinary phthalate metabolite 

concentrations among women undergoing medically assisted reproduction. We used data from 256 

women conceiving 303 pregnancies recruited between 2004 and 2012 from the Massachusetts 

General Hospital Fertility Center. We quantified eleven phthalate metabolite concentrations and 

calculated the molar sum of four di(2-ethylhexyl) phthalate (DEHP) metabolites (ΣDEHP). We 

estimated risk ratios (RRs) and 95% confidence intervals (CIs) for biochemical loss and total 
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pregnancy loss (<20 weeks’ gestation) across quartiles using repeated measures log-binomial 

models, adjusted for age, body mass index, smoking and infertility diagnosis.

Results—Of the 303 pregnancies, 83 (27%) ended in loss less than 20 weeks’ gestation and 

among these, 31 (10%) ended in biochemical loss. Although imprecise, the RRs for biochemical 

loss increased across quartiles of ∑DEHP and three individual DEHP metabolites. For ∑DEHP, the 

RRs (CIs) were: 2.3 (0.63, 8.5), 2.0 (0.58, 7.2), and 3.4 (0.97, 11.7) for quartiles two, three and 

four, compared to one, respectively (p-trend=0.04). RRs for total pregnancy loss were elevated in 

the highest quartiles of ΣDEHP and three DEHP metabolites. The remaining seven phthalate 

metabolite concentrations evaluated were not associated with either outcome.

Conclusions—We found a suggestive pattern of association between conception cycle-specific 

urinary concentrations of DEHP metabolites and biochemical and total pregnancy loss among 

women undergoing medically assisted reproduction.

INTRODUCTION

Healthy reproduction requires complex hormonal processes to work in synchrony. 

Endocrine-disrupting chemicals that interfere with this delicate balance may alter critical 

pathways required to achieve conception, maintain pregnancy, and deliver healthy offspring. 

Mounting epidemiologic evidence associates such chemicals with various adverse 

reproductive and developmental outcomes,1–13 including, more recently, pregnancy loss.7,14 

The ubiquitous nature of several classes of chemicals, such as phthalates, continues to 

prompt considerable concern as our understanding of their role in human fertility and 

reproduction is still in its infancy.15

Phthalates are widely used to impart flexibility and durability to plastics including polyvinyl 

chloride. Phthalates are used in a wide variety of products ranging from vinyl tiles and 

flooring, adhesives, detergents, lubricants, medical devices, pharmaceuticals (in the coating 

of certain oral medications), clothing, food packing, and toys, and are also used as 

solubilizing agents in the preparation of cosmetics and personal care products.16 Widespread 

consumer use of such products has led to near-universal human exposure.5,16 Once ingested, 

inhaled or absorbed, phthalates have a short half-life, undergoing rapid hydrolysis into bio-

active monoesters, some of which may then be further metabolized by oxidation or phase II 

conjugation. Metabolites are excreted mainly in urine.17 More than 95% of US and 

Canadian populations have detectable urinary concentrations of one or more phthalate 

metabolites.18,19 Studies suggest that the developing embryo and fetus are most sensitive to 

potential adverse effects, and biomonitoring studies report the highest concentration of many 

urinary phthalate metabolites in women and children.5,16,17,20,21

Experimental studies have demonstrated embryofetotoxic and teratogenic effects of di-n-

butyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) among breeding mice and 

rats,22–27 with dose, timing, and route of exposure strongly mediating deleterious effects.28 

Oral administration of DBP to pregnant or pseudopregnant rats was associated with 

increases in preimplantation and postimplantation losses at high and moderate doses, 

respectively;22 such losses may be mediated by impairment in uterine function.22 Tomita et 

al. (1986) showed that timing of exposure resulted in different fetotoxic endpoints, with 
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mono(2-ethylhexyl) phthalate (MEHP), a metabolite of DEHP, given to mice on gestation 

day 7 increasing early fetal deaths, compared to dosing on day 8 increasing late fetal 

deaths.28 Other studies show that dietary or orally dosed DEHP and DBP in breeding rats or 

mice resulted in fewer litters, fewer live pups per litter, and a decrease in the proportion of 

pups born alive, in a dose-dependent manner.25,29

While substantial experimental evidence linking phthalates to teratogenicity and fetal demise 

exists, little is known about its impact on embryo development and pregnancy maintenance 

in humans, especially in relation to exposure in the very early stages of conception. Three 

recent studies have examined the effect of various phthalates on pregnancy loss in couples 

conceiving naturally with conflicting results.7,13,30 Others have investigated the effect of 

phthalates on gestational length31–33 and preterm birth34,35 with varying methods and 

conclusions.

Pregnancy loss is the most frequent unintended pregnancy outcome, affecting 31% of all 

conceptions.36 Among subfertile women undergoing medically assisted reproduction, 

pregnancy loss is a costly and emotional outcome, and, although predictors of its occurrence 

are not well established, environmental causes may play a role.37–41 Our primary objective 

was to examine the prospective association between eleven urinary phthalate metabolites and 

pregnancy loss among women conceiving through medically assisted reproduction. We 

examined both biochemical pregnancy loss and total pregnancy loss of less than 20 weeks’ 

gestation.

METHODS

Participants

The Environment and Reproductive Health Study (EARTH) is a prospective cohort of 

couples seeking infertility investigation and treatment at the Massachusetts General Hospital 

Fertility Center; EARTH is designed to evaluate the effects of diet and environmental 

exposures on fertility and pregnancy outcomes. Details of the cohort have been described 

previously.9 The EARTH study has been ongoing since 2004 and has recruited 

approximately 700 women and 400 men to date. Women between the ages of 18 and 46 

were eligible to participate and were followed from time of entry, throughout their infertility 

care and eventual pregnancy. The present study included women enrolled in EARTH 

between November 2004 and October 2014 with two or more positive serum beta Human 

Chorionic Gonadotropin (β-hCG) measurements (N=600).41 A priori we excluded: any 

natural conceptions (i.e., conceived without assisted reproduction) as we had missing early 

β-hCG measurements for almost 26% of all such cycles (n=127); conceptions through the 

use of egg donors (n=23); and conceptions with unknown cycle outcomes (n=4), leaving 446 

eligible conceptions before merging with our phthalate database which extends only to April 

2012. The final study cohort consisted of 303 conceptions after either fresh or frozen in vitro 

fertilization (IVF), or ovarian stimulation with or without intrauterine insemination, from 

256 women with conception cycle-specific urinary concentrations of phthalate metabolites. 

The study was approved by the Institutional Review Boards of MGH, Harvard T.H. Chan 

School of Public Health, and the Centers for Disease Control and Prevention (CDC). Prior to 
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signing informed consent, subjects spoke with a trained research nurse who explained all 

procedures and answered questions.

Exposure ascertainment

Study participants provided a spot urine sample at study entry, and up to two spot urine 

samples per fertility treatment cycle: the first specimen (not necessarily a fasting sample) 

corresponding to days 3 to 9 of the monitoring phase of the cycle, and the second at the time 

of oocyte retrieval or intrauterine insemination. Both conception cycle-specific urine 

samples collected prior to the index conception were included in the analysis. Urine samples 

were collected using a sterile phthalate-free polypropylene cup. Each sample was analyzed 

for specific gravity with a handheld refractometer (National Instrument Company, Inc., 

Baltimore, MD, USA), divided into aliquots, and frozen for long-term storage at −80 °C. 

Samples were shipped on dry ice overnight to the CDC (Atlanta, GA, USA) for 

quantification of urinary phthalate metabolite concentrations using solid phase extraction 

coupled with high performance liquid chromatography-isotope dilution tandem mass 

spectrometry.42 The eleven phthalate metabolites were: MEHP, mono(2-ethyl-5-

hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), 

mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono(3-carboxypropyl) phthalate 

(MCPP), monocarboxyisooctyl phthalate (MCOP), monocarboxyisononyl phthalate 

(MCNP), monobenzyl phthalate (MBzP), monoethyl phthalate (MEP), mono-isobutyl 

phthalate (MiBP), and mono-n-butyl phthalate (MBP). The limits of detection were 0.5–1.2 

µg/L (MEHP), 0.2–0.7 µg/L (MEHHP, MEOHP), 0.2–0.6 µg/L (MECPP), 0.1–0.2 µg/L 

(MCPP), 0.2–0.7 µg/L (MCOP), 0.2–0.6 µg/L (MCNP), 0.2–0.3 µg/L (MBzP), 0.4–0.8 µg/L 

(MEP), 0.2–0.3 µg/L (MiBP), and 0.4–0.6 µg/L (MBP). We calculated the molar sum of 

DEHP metabolites (∑DEHP) by dividing each metabolite concentration by its molecular 

weight and then summing: [(MEHP*(1/278.34)) + (MEHHP*(1/294.34)) + 

(MEOHP*(1/292.33)) + (MECPP*(1/308.33))]. Values below the limit of detection were 

assigned the limit of detection divided by the square root of two.43 As analyses were based 

on quartiles, the method for assigning concentrations below the limit of detection had no 

impact on associations.

Outcome ascertainment

Routine follow-up of medically assisted reproduction at the Massachusetts General Hospital 

includes a quantitative serum β-hCG typically measured on day 17 (range 15–20) following 

oocyte retrieval and/or intrauterine insemination, and a transvaginal ultrasound at 

approximately 6 weeks gestation for those achieving a positive β-hCG. Pregnancy was 

defined as two or more β-hCG levels ≥ 6 mIU/mL, as detection of β-hCG production would 

indicate implantation and syncytiotrophoblastic invasion into the decidua.40,44 This 

definition is also consistent with the hospital’s laboratory reference threshold of ≥ 6 mIU/ml 

to indicate a positive pregnancy test. Biochemical pregnancy loss was defined as the demise 

of a β-hCG confirmed pregnancy that was never visualized on ultrasound.41 Total pregnancy 

loss was defined as any loss of a pregnancy <20 weeks’ gestational age (≤139 days), 

including biochemical losses. We followed committee practice guidelines from the 

American College of Obstetricians and Gynecologists to estimate gestational age following 

medically assisted reproduction.45 For IVF based conceptions, we calculated gestational age 
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as: outcome date − date of transfer + 14 + cycle day of transfer.45,46 For ovarian stimulation 

with or without intrauterine insemination, we used early ultrasound based gestational age 

estimates, and for the fraction (29/303, ~10%) whereby ultrasound and IVF data were not 

available, we used outcome date minus cycle start date.45 The treating infertility physician 

diagnosed infertility using the Society for Assisted Reproductive Technology definitions. 

Other pertinent demographics such as age and race were obtained from a baseline 

questionnaire, and clinical information such as infertility treatment received during cycle, β-

hCG levels, ultrasound data including measurements of embryo, and embryo transfer date 

and day were abstracted from the patients’ electronic medical records by trained study staff. 

Age of participant was collected at time of study enrollment. Height and weight were 

measured at enrollment by the study nurse. Body Mass Index (BMI) measured at study entry 

was calculated as weight (kilograms) divided by height (meters) squared.

Statistical Analysis

Urinary phthalate metabolite concentrations were adjusted for urinary dilution by 

multiplying the metabolite concentration by [(1.015−1)/(SG−1)], where SG is the specific 

gravity of the participant’s sample and 1.015 is the mean SG for all included study 

samples.47,48 The specific gravity adjusted phthalate metabolite concentrations were natural 

log-transformed to normalize distribution and were used to estimate the geometric mean 

from two spot urine samples collected during each cycle. The geometric mean value was the 

cycle-specific summary estimate of exposure used to form quartiles. For cycles with only 

one urine sample (~7% of all samples), the phthalate concentration for that single sample 

was used as the cycle-specific concentration.

We examined the clinical and demographic characteristics, reported as means (± SD) or 

number of women (%), of study participants in the total cohort and by quartiles of ∑DEHP 

concentration. We fit generalized estimating equation (GEE) models to evaluate the 

association between quartiles of urinary phthalate metabolites and pregnancy loss, 

accounting for correlation within women contributing more than one pregnancy. GEE 

models were fit using a log link function and binomial distribution to yield estimated risk 

ratios (RRs) and 95% confidence intervals (CIs) for biochemical pregnancy loss and total 

pregnancy loss, with the lowest quartile as the reference category. We fit a separate model 

for each of the eleven individual phthalate metabolites as well as the DEHP metabolite 

summary measure. We conducted statistical tests for trend across quartiles using the urinary 

phthalate metabolite concentration as an ordinal level indicator variable of each quartile in 

the regression models, adjusted for covariates. Candidate covariates were selected a priori 
based on the literature and included maternal age (≤32, 33–35, 36–38, ≥39), BMI 

(continuous), smoking status (never smoked vs. ever smoked, defined as a current or former 

smoker), and infertility diagnosis (female, male [reference category], or unexplained) in 

adjusted models.37,44,49–51 We performed statistical analyses with SAS (version 9.4; SAS 

Institute Inc., Cary, USA).
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RESULTS

The study cohort comprised 256 women, predominantly Caucasian (88%) and never-

smokers (74%), with an average age of 34.9 (±3.8) years at time of enrollment (Table 1). 

Most women were nulliparous (86%), had college or graduate degrees (92%), and about 

34% had a female factor as the primary cause of infertility (Table 1). Demographics and 

patient characteristics did not differ by quartiles of ∑DEHP; however, the proportion of 

biochemical and total pregnancy loss (<20 weeks) was markedly higher in the fourth quartile 

compared to the first (Table 1). The distribution of the specific gravity adjusted urinary 

phthalate metabolite concentrations from 564 samples provided by 303 pregnancies is shown 

in Table 2. The percentage of urine samples with detectable concentrations of phthalate 

metabolites ranged from 74% (MEHP) to 100% (MEP).

In the repeated measures log-binomial regression models adjusted for age, BMI, smoking 

status, and infertility diagnosis, the RRs (95% CIs) for biochemical pregnancy loss increased 

across quartiles of ∑DEHP and across three individual DEHP metabolites (MEHP, MEHHP, 

MEOHP) (Table 3). For ∑DEHP, the RRs (95% CIs) were: 2.3 (0.63, 8.5), 2.0 (0.58, 7.2), 

and 3.4 (0.97, 11.7) in quartiles two, three, and four, compared to one, respectively (p-test 

for trend=0.04). The RRs were imprecise as evidenced by the width of the confidence 

interval. The remaining seven phthalate metabolite concentrations were not associated with 

biochemical pregnancy loss (Table 3).

Total pregnancy loss of <20 weeks’ gestation showed modest increases in RRs across 

quartiles two and three of ∑DEHP and DEHP metabolites, however positive associations 

were observed in the highest quartiles of MEHHP and MEOHP, and borderline significant 

trend tests for ∑DEHP and MEHP (Table 4). For MEOHP, the RRs (95% CIs) were: 1.6 

(0.90, 2.9); 1.5 (0.84, 2.9) and 2.0 (1.1, 3.5) in quartiles two, three and four, compared to 

one, respectively (p-test for trend=0.03). No notable associations were observed among the 

other phthalate metabolites examined (data not shown).

DISCUSSION

In this study of subfertile couples conceiving through medically assisted reproduction, we 

found that increased conception cycle-specific urinary concentrations of ∑DEHP and 

individual DEHP metabolites were associated with biochemical pregnancy loss. 

Associations were most robust for the upper two quartiles of MEHHP and MEOHP. We 

furthermore observed that RRs for total pregnancy loss of less than 20 gestational weeks 

increased in the highest compared to the lowest quartiles, with similarly stronger findings for 

MEHHP and MEOHP. While some results for both outcomes had significant trend tests, 

several effect estimates were imprecise based on the width of the corresponding confidence 

interval. The remaining seven phthalate metabolite concentrations examined (MEP, MBP, 

MiBP, MBzP, MCPP, MCOP, and MCNP) were not associated with either outcome.

To the best of our knowledge, this is the first study to examine biochemical pregnancy loss 

within a subfertile cohort conceiving through medically assisted reproduction. The unique 

nature of our study design permitted an examination of biochemical pregnancies that were 
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detected very early post-implantation through serum β-hCG measurement on day 17 after 

embryo transfer or intrauterine implantation. With about a third of all pregnancies ending 

before viability36 and a limited understanding of environmental causes of human pregnancy 

loss, the fertility treatment setting in this study offered a glimpse into the so-called ‘black 

box’ of events in the post-implantation period.51 Our results suggest that ∑DEHP 

metabolites and the specific metabolites MEHP, MEHHP, and MEOHP may be associated 

with one or more adverse pregnancy outcomes involving early stages of implantation, 

decidualization, placentation or embryogenesis through possibly uterine-embryo hormonal 

signaling.52 Pregnancy loss of up to 20 weeks’ gestation was also elevated at the highest 

concentrations of DEHP metabolites. It is possible however, that assessment of exposure at 

alternate time points, for example during pregnancy itself, may have produced different 

(possibly stronger) results especially in light of the short half-life and episodic nature of 

phthalate exposure. Urinary levels of metabolites in the follicular phase of a cycle are only a 

proxy of exposure in the first 20 weeks of pregnancy and the most sensitive time point of 

exposure may differ for different pregnancy loss endpoints.

Despite associations of urinary DEHP metabolites with pregnancy loss, the overall 

frequency of loss in our study population was not elevated compared to what we would 

expect clinically in a fertile population.36 This is consistent with a large study that compared 

early pregnancy loss among women conceiving with IVF (fresh and frozen) with fertile 

women conceiving naturally.53 Furthermore, we would not expect the overall frequency of 

pregnancy loss to be higher in our cohort because our urinary concentrations of DEHP 

metabolites were comparable to NHANES (geometric mean of MEHP 2.72 µg/L and median 

of 2.10 µg/L for years 2005–2006).54

In a recent prior study from our cohort, we reported that urinary metabolites of DEHP and 

the metabolite MCNP were associated with decreased oocyte yield and number of mature 

oocytes at retrieval, as well as reduced fertilization rates for the metabolites MCOP and 

MCPP.1 Urinary DEHP metabolites were also associated with reduced clinical pregnancy 

rates and live birth rates among initiated IVF cycles,1 suggesting that there is a degree of 

loss along the continuum of clinical pregnancy to live birth. The difference between clinical 

pregnancy rates and live birth rates could be interpreted as representing clinical losses. Our 

current findings directly show that even after fertilization and implantation, among women 

achieving a β-hCG confirmed pregnancy (by two or more positive serum results), exposure 

to DEHP may continue to adversely impact early embryo development or uterine receptivity. 

It is possible that embryos that survived transfer were potentially already destined to fail 

through earlier adverse processes involving exposures to phthalates. Or, perhaps, phthalate 

metabolites may alter hormonal signaling and secretion of key endogenous hormones such 

estrogen and progesterone55 resulting in a less favorable uterine milieu toward implantation 

and placentation, even for viable and healthy embryos.

While our study was not designed to elucidate the mechanism through which exposure to 

phthalates may adversely impact embryo development and pregnancy maintenance, our 

results are consistent with animal studies suggesting that DEHP affects early reproductive 

endpoints and is embryofetotoxic in mice and rat models.22,24,25,27,28 Suppression of 

decidualization causing impairment in uterine function through dysregulation of 
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progesterone has been proposed as one possible mechanism by Ema and colleagues 

(2000).22 MEHP has also been detected in the fetuses of mice, likely due to transplacental 

crossing.28 Unlike several experimental studies that show DBP to also be fetotoxic,22,24 we 

observed no evidence of an association between MBP, the main DBP metabolite, with 

pregnancy loss in our cohort.

Three recent epidemiologic studies examined comparable endpoints of pregnancy loss in 

relation to urinary phthalate metabolites in women planning or attempting pregnancy.7,13,30 

Our results are consistent with those of a Danish study by Toft and colleagues, who 

examined pregnancy loss, defined as subclinical embryonal losses and clinical losses 

combined.7 The authors enrolled couples planning their first pregnancy after discontinuation 

of birth control, and followed them prospectively until a clinically recognized pregnancy 

occurred or for six menstrual cycles. Their analysis - like ours and that by Jukic - included 

only women who achieved a pregnancy during the study period (N=128), excluding those 

not at risk for the outcome. Also similar to our analyses, Toft and colleagues analyzed 

conception specific urinary phthalate metabolites from day 10 after the last day of the 

menstrual cycle before pregnancy. They reported an elevated odds ratio (OR) of pregnancy 

loss in the upper tertile of conception specific to MEHP concentrations [adjusted OR: 2.87 

(95% CI: 1.09, 7.57)]. We obtained similar RRs for biochemical pregnancy loss in the upper 

quartile of MEHP after additionally adjusting for infertility diagnosis (Table 3, model 2) 

[adjusted RR: 2.8 (95% CI: 0.99, 8.1), despite our substantially lower reported 

concentrations (Table 2) compared to the Danish women. Unlike our study, however, Toft 

and colleagues reported no significant associations for the two other DEHP metabolites 

examined (MEHHP, MEOHP) despite substantially higher urinary concentrations in their 

cohort. One important distinction, however is that our population is a subfertile group of 

women undergoing medically assisted reproduction and a potentially more sensitive, or 

high-risk group, for the early endpoints of biochemical pregnancy loss. They also had a 

higher reported incidence of total pregnancy loss (37.5%, ascertained by interview after one 

year) compared to ours (27%). Non-differential misclassification of outcome could dilute 

associations, leading to a false null conclusion, but it would seem unlikely that this would be 

chemical specific.

A case-control study of women without a history of infertility was conducted in China by 

Mu et al. (2015). The cases included clinically identified hospital-based pregnancy losses 

while the controls were pregnant women recruited from the same hospital confirmed to have 

a viable fetus with cardiac activity. The study was relatively small (132 cases and 172 

controls) and the timing of collection of urine samples for measurement of phthalate 

metabolites relative to the pregnancy loss was 4 days after ascertainment of pregnancy status 

via transvaginal ultrasound. In contrast to our study, they found an elevated adjusted odds 

ratio (OR) of clinical pregnancy loss associated with urinary concentrations of MEP, MiBP, 

and MBP, which was consistent with some experimental animal studies.22,24 However, they 

did not find associations of pregnancy loss with urinary DEHP metabolites.

The study by Jukic and colleagues (2015) is comparable to ours in that they reported an 

overall loss of approximately 32% if early (<6 weeks) and up to 25 gestational weeks losses 

were combined - our total pregnancy loss (biochemical losses and those up to 20 weeks 
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gestation) occurred in 27% of pregnancies.13 The authors, however, found an inverse 

association between urinary DEHP metabolites and early loss: higher urinary DEHP 

metabolite concentrations were associated with reduced early loss. One possible explanation 

is that timing of exposure measurement may be a critical factor in detecting a risk of early 

losses. Jukic and colleagues pooled three different urine samples, one of which came from 

the luteal phase of the menstrual cycle. This pooling may have resulted in a different 

exposure profile that may have been less relevant to the endpoint under study. Our study and 

the Danish study included only follicular phase urine, with our analysis using the geometric 

mean concentration of two different time points (day 3 to 9 and again at time of oocyte 

retrieval) as the summary estimate of exposure.

Our study provides preliminary evidence that early pregnancy may be adversely affected by 

DEHP exposure. The prospective nature of this design, relying upon an infertile study 

population from a large academic fertility setting, permitted a careful examination of the 

direction of the relationship between phthalate metabolite concentrations and post-

implantation pregnancy failure. The urinary concentrations of the phthalate metabolites 

measured are within the ranges reported for the US general population.54 However, these 

findings may not be generalizable to women from the general population without fertility 

concerns, co-exposures to other select chemicals were also not accounted for, and exposure 

to phthalates may be reflective of other unknown lifestyle or fertility factors that might be 

associated with pregnancy loss. However, we attempted to control for these factors by 

adjusting for age, infertility diagnosis, BMI, and smoking. We also evaluated multiple 

phthalate metabolites at the same time to account for multiple co-exposures, and all samples 

were collected in one clinical location and processed under one protocol by the CDC. 

Furthermore, phthalates are short-lived chemicals and exposures are likely episodic, making 

the assessment of long-term exposure difficult. We attempted to partially account for the 

variability in phthalate metabolite concentrations by using the average concentration of two 

urine samples provided at two time points in the follicular phase of the conception cycle. 

These time points correspond most proximally to levels at the time of implantation and 

decidualization, making biochemical pregnancy loss a sensitive endpoint relevant to the 

exposure window we assessed.

CONCLUSIONS

We found a positive association between conception cycle specific urinary concentrations of 

DEHP metabolites and both biochemical pregnancy loss and total pregnancy loss of <20 

gestational weeks. Our findings were consistent with one of two previous studies that 

examined similar endpoints in relation to phthalate metabolites. Our findings are unique, 

however, in that this is the first study to examine and demonstrate an association with 

biochemical pregnancy losses among women conceiving through medically assisted 

reproduction, suggesting that subfertile women may be potentially more sensitive to early 

adverse reproductive outcomes. Our findings, however, should be interpreted cautiously in 

light of the inherent limitations and additional studies are needed to confirm our results.
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Table 3

Risk Ratios (RR) and 95% Confidence Intervals (CIs) for biochemical pregnancy loss across quartiles of 

urinary ∑DEHP and 11 individual phthalate metabolite concentrations using 564 cycle-specific samples from 

303 pregnancies in the Environment and Reproductive Health (EARTH) Study.

Phthalate Metabolite
Quartile (µg/L)

RR (95% CI)
Biochemical Loss

Unadjusteda
Model

RR (95%CI)
Biochemical Loss

Adjustedb
Model 1

RR (95% CI)
Biochemical Loss

Adjustedc
Model 2

∑DEHP Metabolites
(in µmol/L)

Q1 (0.02, 0.10) Ref Ref Ref

Q2 (0.10, 0.18) 2.6 (0.7, 9.5) 2.6 (0.73, 9.0) 2.3 (0.63, 8.5)

Q3 (0.18, 0.40) 2.3 (0.6, 8.5) 2.3 (0.63, 8.1) 2.0 (0.58, 7.2)

Q4 (0.40, 4.3) 4.3 (1.3, 14.2) 3.9 (1.2, 13.3) 3.4 (0.97, 11.7)

p-trendd 0.01 0.02 0.04

MEHP

Q1 (<LOD, 1.3) Ref Ref Ref

Q2 (1.3, 2.6) 1.7 (0.54, 5.5) 1.7 (0.54, 5.7) 1.6 (0.48, 5.1)

Q3 (2.6, 6.3) 1.5 (0.45, 4.9) 1.5 (0.46, 4.8) 1.5 (0.47, 4.6)

Q4 (6.3, 78.0) 3.4 (1.2, 9.8) 3.3 (1.1, 9.7) 2.8 (0.99, 8.1)

p-trendd 0.02 0.03 0.03

MEHHP

Q1 (0.93, 7.7) Ref Ref Ref

Q2 (7.7, 14.0) 2.0 (0.51, 7.7) 2.0 (0.51, 7.5) 1.8 (0.45, 7.0)

Q3 (14.0, 35.0) 3.3 (0.96, 11.3) 3.2 (0.97, 10.7) 2.8 (0.84, 9.1)

Q4 (35.0, 378) 3.9 (1.2, 13.2) 3.7 (1.1, 12.3) 3.1 (0.91, 10.5)

p-trendd 0.007 0.01 0.03

MEOHP

Q1 (0.90, 5.3) Ref Ref Ref

Q2 (5.3, 10.2) 3.4 (0.76, 15.7) 3.2 (0.73, 14.5) 3.1 (0.68, 13.8)

Q3 (10.2, 24.0) 4.4 (1.0, 19.3) 4.4 (1.0, 18.7) 4.2 (0.99, 17.5)

Q4 (24.4, 266) 6.4 (1.5, 26.8) 6.0 (1.4, 25.0) 5.2 (1.2, 21.9)

p-trendd 0.002 0.003 0.006

MECPP

Q1 (2.4, 14.3) Ref Ref Ref

Q2 (14.3, 25.1) 1.7 (0.53, 5.7) 1.7 (0.53, 5.3) 1.4 (0.42, 4.7)

Q3 (25.2, 57.2) 1.7 (0.53, 5.6) 1.7 (0.53, 5.3) 1.5 (0.46, 4.7)

Q4 (57.2, 613) 3.2 (1.1, 9.3) 3.0 (1.0, 8.9) 2.4 (0.78, 7.6)

p-trendd 0.02 0.04 0.07

MEP

Q1 (2.40, 21.4) Ref Ref Ref

Q2 (21.4, 50.3) 1.10 (0.50, 2.69) 1.01 (0.40, 2.56) 0.96 (0.41, 2.30)

Q3 (50.3, 133) 0.74 (0.25, 2.17) 0.72 (0.24, 2.21) 0.65 (0.23, 1.87)
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Phthalate Metabolite
Quartile (µg/L)

RR (95% CI)
Biochemical Loss

Unadjusteda
Model

RR (95%CI)
Biochemical Loss

Adjustedb
Model 1

RR (95% CI)
Biochemical Loss

Adjustedc
Model 2

Q4 (133, 3879) 0.99 (0.38, 2.59) 0.88 (0.31, 2.46) 0.86 (0.34, 2.16)

p-trendd 0.79 0.71 0.63

MBP

Q1 (0.84, 6.7) Ref Ref Refe

Q2 (6.8, 12.6) 0.86 (0.31, 2.4) 0.70 (0.23, 2.1) 0.66 (0.22, 1.9)

Q3 (12.6, 21.3) 1.1 (0.46, 2.7) 0.85 (0.32, 2.3) 0.78 (0.28, 2.2)

Q4 (21.3, 4406) 0.86 (0.33, 2.23) 0.69 (0.24, 2.0) 0.58 (0.19, 1.7)

p-trendd 0.91 0.61 0.43

MCPP

Q1 (<LOD, 1.7) Ref Ref Ref

Q2 (1.7, 3.4) 0.99 (0.39, 2.5) 0.88 (0.35, 2.2) 0.84 (0.35, 2.0)

Q3 (3.4, 6.7) 0.98 (0.41, 2.4) 0.86 (0.36, 2.0) 0.92 (0.40, 2.1)

Q4 (6.7, 222) 0.86 (0.31, 2.4) 0.76 (0.29, 2.0) 0.75 (0.29, 1.9)

p-trendd 0.79 0.56 0.60

MiBP

Q1 (<LOD, 3.7) Ref Ref Ref

Q2 (3.7, 7.1) 0.62 (0.21, 1.8) 0.49 (0.16, 1.5) 0.53 (0.17, 1.6)

Q3 (7.1, 12.0) 1.48 (0.68, 3.2) 1.22 (0.57, 2.6) 1.2 (0.59, 2.5)

Q4 (12.0, 55.6) 0.74 (0.28, 2.0) 0.74 (0.27, 2.0) 0.71 (0.26, 1.9)

p-trendd 0.95 0.97 0.90

MBzP

Q1 (<LOD, 1.7) Ref Ref Ref

Q2 (1.7, 3.1) 1.3 (0.49, 3.6) 1.2 (0.45, 3.37) 1.2 (0.46, 3.3)

Q3 (3.2, 6.1) 1.5 (0.57, 3.8) 1.2 (0.45, 3.16) 1.2 (0.42, 3.2)

Q4 (6.1, 71.0) 1.3 (0.46, 3.7) 1.3 (0.47, 3.70) 1.1 (0.39, 3.1)

p-trendd 0.57 0.68 0.97

MCOP

Q1 (0.62, 8.6) Ref Ref Ref

Q2 (8.6, 21.6) 1.8 (0.64, 5.1) 1.9 (0.68, 5.5) 2.08 (0.75, 5.7)

Q3 (21.6, 56.2) 1.6 (0.54, 4.6) 1.4 (0.53, 4.0) 1.73 (0.66, 4.5)

Q4 (56.2, 384) 1.0 (0.30, 3.4) 0.92 (0.27, 3.1) 0.92 (0.29, 2.9)

p-trendd 0.92 0.70 0.85

MCNP

Q1 (0.5, 2.4) Ref Ref Ref

Q2 (2.4, 4.2) 1.2 (0.41, 3.3) 1.0 (0.36, 2.8) 1.1 (0.38, 2.9)

Q3 (4.2, 7.2) 1.1 (0.41, 3.2) 0.90 (0.31, 2.6) 0.84 (0.28, 2.5)

Q4 (7.2, 566) 1.2 (0.40, 3.4) 1.0 (0.35, 2.8) 1.0 (0.39, 2.7)

p-trendd 0.80 0.96 0.93
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Abbreviations: DEHP: di(2-ethylhexyl) phthalate; MEHP: mono(2-ethylhexyl) phthalate; MEHHP: mono(2-ethyl-5-hydroxyhexyl) phthalate; 
MEOHP: mono(2-ethyl-5-oxohexyl) phthalate; MECPP: mono(2-ethyl-5-carboxypentyl) phthalate; MEP: monoethyl phthalate; MBP: mono-n-
butyl phthalate; MCPP: mono(3-carboxypropyl) phthalate; MiBP: mono-isobutyl phthalate; MBzP: monobenzyl phthalate; MCOP: 
monocarboxyisooctyl phthalate; MCNP: monocarboxyisononyl phthalate.

a
Unadjusted and adjusted models estimated risk ratios and 95% CIs with repeated measures log-binomial regression.

b
Model 1 estimated RRs and 95% CIs adjusting for age (categorical), BMI (continuous), smoking status (never/ever).

c
Model 2 estimated RRs and 95% CIs adjusting for age (categorical), BMI (continuous), smoking status (never/ever), and infertility diagnosis 

(male factor [reference category], female factor, and unexplained).

d
Tests for trend were performed using the urinary phthalate metabolite concentration quartile as an ordinal level indicator variable in the regression 

model, adjusted for covariates.

e
Log-binomial model did not converge: final presented model obtained using logistic regression.
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Table 4

Risk Ratios (RR) and 95% Confidence Intervals (CIs) for total pregnancy loss (<20 weeks’ gestation) across 

quartiles of urinary ∑DEHP and 4 individual DEHP metabolite concentrations using 564 cycle-specific 

samples from 303 pregnancies in the Environment and Reproductive Health (EARTH) Study.

Phthalate Metabolite Quartile
(µg/L)

RR (95% CI)
Pregnancy Loss

Unadjusteda
Model

RR (95%CI)
Pregnancy Loss

Adjustedb
Model

∑DEHP Metabolites
(in µmol/L)

Q1 (0.02, 0.10) Ref Ref

Q2 (0.10, 0.18) 1.0 (0.57, 1.9) 1.1 (0.61, 2.0)

Q3 (0.18, 0.40) 1.00 (0.54, 1.8) 1.00 (0.56, 1.8)

Q4 (0.40, 4.3) 1.7 (1.0, 2.9) 1.6 (0.96, 2.7)

p-trendc 0.03 0.06

MEHP

Q1 (<LOD 1.3) Ref Ref

Q2 (1.3, 2.6) 1.1 (0.60, 2.0) 1.1 (0.64, 2.0)

Q3 (2.6, 6.3) 0.93 (0.50, 1.7) 0.94 (0.53, 1.7)

Q4 (6.3, 78.0) 1.7 (1.0, 2.9) 1.6 (0.99, 2.7)

p-trendc 0.04 0.06

MEHHP

Q1 (0.93, 7.7) Ref Ref

Q2 (7.7, 14.0) 1.2 (0.65, 2.2) 1.2 (0.67, 2.1)

Q3 (14.0, 35.0) 1.4 (0.76, 2.5) 1.3 (0.76, 2.4)

Q4 (35.0, 378) 1.8 (1.1, 3.2) 1.7 (1.0, 2.9)

p-trendc 0.02 0.03

MEOHP

Q1 (0.90, 5.3) Ref Ref

Q2 (5.3, 10.2) 1.6 (0.86, 2.9) 1.6 (0.90, 2.9)

Q3 (10.2, 24.0) 1.5 (0.81, 2.9) 1.5 (0.84, 2.9)

Q4 (24.4, 266) 2.1 (1.2, 3.8) 2.0 (1.1, 3.5)

p-trendc 0.01 0.03

MECPP

Q1 (2.4, 14.3) Ref Ref

Q2 (14.3, 25.1) 0.88 (0.47, 1.6) 0.87 (0.47, 1.5)

Q3 (25.2, 57.2) 1.1 (0.63, 1.9) 1.1 (0.62, 1.8)

Q4 (57.2, 613) 1.5 (0.92, 2.5) 1.4 (0.85, 2.4)

p-trendc 0.05 0.09

Abbreviations: DEHP: di(2-ethylhexyl) phthalate; MEHP: mono(2-ethylhexyl) phthalate; MEHHP: mono(2-ethyl-5-hydroxyhexyl) phthalate; 
MEOHP: mono(2-ethyl-5-oxohexyl) phthalate; MECPP: mono(2-ethyl-5-carboxypentyl) phthalate.

a
Unadjusted and adjusted models estimated risk ratios and 95% CIs with repeated measures log-binomial regression.
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b
Adjusted model estimated RRs and 95% CIs adjusting for age (categorical), BMI (continuous), smoking status (never/ever), and infertility 

diagnosis (male factor [reference category], female factor, and unexplained).

c
Tests for trend were performed using the urinary phthalate metabolite concentration quartile as an ordinal level indicator variable in the regression 

model, adjusted for covariates.
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